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The JPL Integrated Model-Centric Engineering (IMCE) project is tasked with bringing 
Model Based Engineering methods, tools and practices into use by systems engineers. Taking 
a Europa-focused flagship concept proposal as an example of a system that is early in its 
engineering lifecycle, IMCE piloted architectural elements for an integrated modeling 
environment. These elements were used together both as a proof-of-concept and to guide 
development of the methods, tools and practices for flight projects as JPL transitions to 
model-centric engineering. This paper presents both products of this effort and a variety of 
insights to guide the future of model-centric engineering techniques. Also, recommendations 
are made regarding the strengths and weaknesses of existing information models and the 
Systems Modeling Language (SysML). 

Introduction 
The purpose of this paper is to describe the Integrated Model-Centric Engineering pilot 
performed using data from the Europa proposal for the 2008 NASA/ESA Outer Planets 
Flagship Mission study. The pilot was based on this mission concept because it is still in 
early development, and it is a prime example of the trend toward increasing ambitions in 
space science and its supporting flight systems. The pilot addressed multiple classes of 
modeling and integration problems, and provided proof-of-concept solutions where possible. 
Where model-based tools are still immature, issues were identified. The intention is threefold: 
to pilot ways to move conceptual design information into a model-based platform; to 
understand how this information can provide a solid foundation for scaling; and to reduce the 
gap between SysML concepts and the conceptual patterns of space systems engineers at JPL. 
The pilot produced a series of insights into general integration issues, the strengths and 
limitations of common modeling, simulation, and solving tools, and suggestions on how to 
ease the learning curve for systems engineers used to working in a conventional regime. 

The Object Management Group’s Systems Modeling Language (OMG SysML) (Object 
Management Group, 2008) was used as the foundation for an information model of the 
Europa concept. A variety of architectural views, models, and alternate representations of the 
design were generated in this language. Some basic simulations of various spacecraft 



behaviors were used to introduce dynamic analyses. These were built in conjunction with 
existing executable trade models. As the team of authors became satisfied with the quality 
and fidelity of the representations of the spacecraft, they presented these results to systems 
engineers working on the project. The results of these interactions, which occurred during 
and after this effort and during its follow-on, are the source of the insights presented in this 
paper. A number of these should be taken to heart by both developers of the SysML language 
and tools, simulation tool makers and those that are pushing for adoption of model-based 
engineering. 

Background 
Systems engineering is a well-established discipline with a large body of work, both practical 
and theoretical, concerning the problems of describing and controlling designs. Collectively, 
the current set of approaches has been labeled a “document-centric” practice. This is due to 
the fact that design control is executed by creating legalistic natural language statements, 
which are the current form of design requirements. The basis of these requirements are 
examined and reviewed for their rigor and appropriateness through a series of formalized 
meetings, which use documents that specify both the content and the structure of the review. 
Further, a great deal of day-to-day design work is conducted and communicated by passing 
around emails, diagrams rendered by software or hand, and technical memos. There are a 
number of issues that have been raised with the current practice, including questions of the 
accuracy of description, burden of document maintenance, and the tendency of static 
information to languish in a repository. These are the issues that are often highlighted by 
advocates of a new approach. 

Static documents have a number of drawbacks when considered in a world of modern 
information technology, but they are created to contain the kinds of information needed to 
move from a concept to a design to a spacecraft, and then how to operate it. The ad hoc 
documents created from day to day represent the types of information subsystem and domain 
engineers need to communicate with each other and the systems team. Formal documents, as 
encoded in the NASA Systems Engineering Procedural Requirements (NASA, 2007), trace 
out a series of way stations for the system design to reach on its way to construction and 
operation. In sum, these documents embody information with an established need. 

Model Based Systems Engineering (MBSE) has a long history as well (Wymore, 1993) but 
has never fully taken hold within the systems engineering discipline. While earlier work has 
focused on developing mathematical theory for MBSE, current computer aided Model-based 
approaches invoke the CAD paradigm that has found success in other engineering disciplines 
as a way to visually construct complex information models. Thus, MBSE contrasts with 
document-based approaches by stating that they aim to develop the design through model 
elaboration rather than document elaboration. There are a wide variety of MBSE processes, 
including SYSMOD (Weilkins, 2008), OOSEM (Friedenthal, 2008), a systems adaptation of 
the Rational Process, and JPL’s Systems Analysis (Estefan, 2008). These processes each 
follow the general outline of defining the use of a system, its conceptual structure, design 
down to blueprints, build, integrate, test, and operate. Some discuss disposal as well. But 
most of these end up emulating lifecycle and processes that already exist, using models as the 
major artifacts of those processes. 

The proposed value of Model-Based Systems Engineering (MBSE) is the ability to describe 
the structure and behavior of an integrated system according to the concerns of stakeholders 
rather than as a collection of subsystems. This is no different than systems engineering in 
general. However, the problem with most complex systems is that of integrating information 



across many large teams. As designs grow and change, ripple effects develop and 
maintaining documentation becomes a Sisyphean task. This is compounded by the fact that 
increasing use of models in both systems engineering and other engineering disciplines 
produce an information overload that exceeds the ability of office productivity tools and 
artifacts to track. Alternatively, graphical standards based descriptions rendered from a 
common repository of information can provide the richness of information provided by 
computer-aided design tools within other disciples. They can also serve to improve design 
integration and system-level performance. Technologies from the semantic Web (Herman, 
2009) can be used to run advanced queries against formalized models. This is balanced 
against the concern that the information systems and formalisms needed to implement MBSE 
will divert the attention of the systems engineering team. MBSE is about making the practice 
of systems engineering as effective as possible. 

Modeling Concerns in Formulation and Phase A 
In the early phases of a design, problems of information do not present themselves in terms of 
complexity of the design or team. The team is small, and so communication is 
straightforward. The technical information to be communicated is relatively abstract – 
families of options and general design principles rather than the connections between specific 
pieces of hardware. Problems of information do appear if the tempo of design increases or if 
there is an interest in automated search methods. At its ideal, early phase design should be 
investigating a wide range of design alternatives and be very open to change. The questions 
of data exchange are less about keeping a large team in the loop as they are about gathering 
and absorbing data about a wide variety of options, and transforming them into a common 
basis so that they can be compared fairly and rigorously. The driving questions are “what is 
different between these concepts?” and “what changed when we looked at this issue?” The 
study and elimination of design alternatives is an important aspect of the rationale used to 
support the choice of a given system architecture. An example of this is in an appendix to the 
Europa concept report (NASA, 2008). 

NASA follows a standard process for approving a mission as its technical and managerial 
basis matures. The early formulation phase typically involves moving toward a proposal for 
either a mission or a spacecraft to fulfill a directed mission. The approval of the proposal 
marks Key Decision Point (KDP) A. At this point, a new pot of funding is made available to 
progress to further formulation and the point of ultimate decision as to whether a project will 
move forward: KDP-B. Just after both of these major points, the resources and the need for 
an increase in project personnel arrive. It is at these points that a clear and comprehensive 
description of the design is needed to quickly integrate the new staff.  

Early formulation is primarily concerned with developing a feasible concept with realistic 
resource (schedule, cost, risk, etc.) budgets that can be used to compete with alternate 
concepts. Once KDP-A is reached and the project moves into Phase A, the attention turns to 
understanding how the mission will actually be achieved. At this point, the value of modeling 
and MBSE greatly increases, since it makes the implicit explicit and highlights design issues. 
The focus of the work in this paper is primarily Phase A and beyond. 

The value of a model-based approach then evolves into those given earlier: scalability and 
accessibility of information in a central repository, a touchstone of truth, and the ability to 
retrieve information that otherwise requires scanning through multiple documents. These 
capabilities are desired to help with the increasing challenges of managing a maturing design. 
Decisions made early in design manifest their strengths and weaknesses. Changes in design 
balloon in cost and difficulty.  



A model-based approach aims to address these challenges by bridging design reviews with 
superior artifacts, automatically propagating design changes, speeding simulation in support 
of decision-making, and maintaining design integrity through to operations and retirement. 
The effort is aided by starting early. When the design is young, the information needed to 
describe it is manageable, both in terms of modeling effort and the cognitive load it applies to 
its system engineers.  

Integrated Modeling Architecture 
The desired outcome of this task was to demonstrate a proof-of-concept implementation of 
architecture for integrated modeling. The architecture provides a “single source of truth” 
contained in an information model. This is capable of integrating executable simulations as 
well as providing the ability to generate up-to-date, error-checked specifications. In this way, 
project systems engineers and domain systems engineers would be able to construct an 
integrated design and build a specification set for spacecraft projects that would possess the 
quality attributes of scalability, manageability, durability, simplicity, communicability and 
usability. 

The core of the architecture is a standards-based information model that will be durable 
across the lifecycle of the project. For the pilot, this architecture was centered on SysML to 
make diagrammatic depictions of the design. No Magic’s MagicDraw implemented the 
information model in its software, and InterCAX’s ParaMagic was used to attempt to 
integrate the analysis and simulation models. The analytical models were represented by 
Excel, Mathematica, and MATLAB/Simulink, with some limited investigation into Satellite 
Tool Kit (STK) connections. The Velocity Template Language was used to render 
specifications of the design and analysis results from the MagicDraw data store. 

In this architecture, Excel was used to house tabular data such as a master equipment list with 
part descriptions, quantities and masses. Mathematica was meant to handle complex 
computations on vectors of inputs and outputs. And MATLAB’s Simulink toolbox was used 
to represent a dynamic simulation of power and data for the spacecraft during its science 
phase. 

 
Figure 1. Concept of Integrated Modeling infrastructure rendered in a SysML IBD 

Against this architecture, classes of modeling problems focused on low maturity designs were 
examined. The pilot has identified successes and issues with taking engineering models into 
an integrated modeling environment based on the quality attributes described in this section. 



Prototyping Domain-Specific Diagramming In Support Of 
Building Information Models 

Another direction of investigation for this pilot was in the area of domain-specific 
representation. While generic diagrams with boxes and connections can be explained to 
systems engineers, there are also a specific set of shapes and visual semantics that spacecraft 
systems engineers understand from academia or previous training/experience. In this pilot, 
propulsion system semantics were experimented with. In this case, the core of the 
information is contained within the shapes of individual icons, where connector lines have 
little information other than what pieces are connected together. 

Two mechanisms for diagram specialization were experimented with in MagicDraw. The first 
is a simple overlay. The second is the ability to associate a stereotype with a new type of 
icon. In addition, MagicDraw affords the ability to develop custom diagrams and workspaces 
in order to complete the customization. 

Image overlays were used for the operational domain, in which an internal block diagram 
(IBD) was illustrated with images of the spacecraft and bodies of interest to describe physical 
interactions of interest to the science community. A variety of wavelengths of light, electrical 
fields, charged particles, and radar reflections were illustrated in the diagram. Most of these 
are standard items for scientific examination, but the structure of the IBD also provides a 
hook to designers for interfaces the spacecraft needs to provide to its environment. Cameras 
must see the planetary surface, magnetic field instruments must be permeable to outside 
fields but shield those from the spacecraft, and so on.  

Initially, the illustration approach was applied to the propulsion subsystem, but 
experimentation enabled the customization approach. The comparison between the two is 
shown in Figure 2. 

  
          

Figure 2. Diagram with image overlay vs. domain-specific diagram in MagicDraw 



All property, value, and part displays were suppressed so that the icon alone and a caption 
were left. The result of this customization is a diagram with the visual semantics of a domain 
of expertise. The fact that these diagrams have already been used and found useful for a 
specific domain means that there is no need to convince practitioners to use the diagram. The 
only need is to change the platform with which the diagrams are drawn, so that the 
information of the domain is captured, and translatable to a basis that can be used for a 
variety of automated query functions. 

In the above example, it is worth noting that displaying any structure whatsoever upon an 
instance causes the display to revert to the basic block. This is a drawback, as it precludes the 
diagramming of ports or values along with domain-specific information. This deficiency 
should be addressed at both the tool and language level. 

Model Organization for Trades 
An area of strength for MBSE that should be considered is conducting trade studies. In the 
early phases of design, trade studies are being performed not only to set requirements on 
subsystem parameters, but also to make major architectural decisions. Greater coverage of the 
design space in a given analysis provides greater assurance that the appropriate decisions 
have been made. With sweeps of continuous parameters, this can be straightforward to 
automate. Sweeping architectural alternatives requires a machine-readable specification of 
both the architecture and the physics that define its response to the environment. 

However, much possibility is yet to be realized due to the lack of mature helper tools to 
generate a set of alternative architectures from candidate components and feasible 
connections. Although this toolset has yet to be developed, and no work was done toward it 
in this study, it was anticipated. The attributes of SysML that would enable rapid 
specification of alternatives were explored in this work. 
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Figure 3. SysML pattern for systems hierarchy with alternate representations 

The construct that was developed specifies the general structure of alternative options in a 
block definition diagram, as shown in Figure 3. The hierarchy of the architecture through 
systems, subsystems, and assemblies is shown. Also, each level of hierarchy has multiple 
representations – in this case, there are bill of materials (simply a parts list) and structured 
(how parts actually interact) versions. The SysML modeling pattern was designed to allow an 
automated traversal of the discrete space of options that is formed by combinations of choices 
at each level of the hierarchy. The information in the block definition diagram serves as a 
template to make system architectures from. The instance block construct of MagicDraw is 



then used as a container for each architecture that is made from the template. The “instanced” 
architecture can then serve as a guide to customized scripts, constraints solvers, and report 
generation. The general scheme is shown in Figure 3. 

Connecting Descriptive and Analytical Tools 
The integration of analytical and descriptive tools was also investigated in this effort. 
Microsoft’s Excel, MathWorks’ Simulink, and Wolfram Research’s Mathematica were all 
attached to the SysML model in one way or another. Through the effort, each tool was 
viewed as a black box, and the ParaMagic plug-in to MagicDraw was used to feed inputs and 
retrieve outputs. Excel was used in order to load parameter values into the model en masse, 
Simulink to perform a dynamical analysis on a mission scenario, and Mathematica was used 
for calculations. Upon further reflection, it was considered that each of these tools actually 
has an underlying metamodel. This is not a unique realization, as Simulink blocks have been 
transformed into SysML model elements automatically based on the inherent semantics of 
Simulink diagrams (Qamar et. al, 2009). A transformation was performed in the other 
direction for a discrete event simulation (Huang et. al, 2007). These transformations illustrate 
the potential of bootstrapping descriptive models from calculation methods used by engineers 
in their current practice. 

The Excel workbook from which parts data were loaded also had a structured meaning that 
could be tied to the SysML model. Each worksheet holds the information for parts belonging 
to a particular subsystem. Several tables were arranged on the spreadsheet, with headers 
indicating both assemblies within the subsystem and architectural alternatives for those 
assemblies. Masses and contingency allowances were held in specified columns. While a 
designer needs to specify these connections in the information model, they are just as 
rigorous as a database table definition if the spreadsheet layouts are consistent. 

Mathematica has a well-structured metamodel, starting with the Expression construct. All 
elements of Mathematica derive from Expression, and this allows for a versatile engine that 
can replace one mathematical formula for another. Each element type is described by a Head, 
such as Symbol, List, Plus, or functions like Zeta. The engine can sort through multiple rules 
for replacing objects with one Head over another, and use each Head as context for which 
replacement rule to use. Since the structure that Mathematica uses is meant to interpret 
mathematical objects, it also opens the door to employing transformation methods to render 
expressions into desired forms in the SysML world.   

Simulink diagrams have the closest relation to SysML semantics of all of the tools. Every 
entity in the diagram is a transfer block, source, or sink. Transfer blocks transform a set of 
inputs into a set of outputs. Sinks either generate starting values or pull them from outside the 
scope of the simulation. Sources do otherwise. Lines on the Simulink diagrams represent a 
direct transfer of values between blocks. Also, it is possible to encapsulate multiple blocks 
into a single sub-model, which provides the opportunity to map the algorithms used to 
analyze a given piece of hardware or software to that specific component. 

However, these reflections and the examples provided of integration are very new in the 
context of SysML. Simulation tools typically have models of operation that are implicit at 
best. Extracting these models requires reflection upon the nature of the analytical models 
underlying them (e.g., linear, time-invariant, idealized treatment of couplings), recommended 
workflows, and data structures. The payoff in considering internal models of these tools is the 
great deal of valuable information stored within the structure of these tools.  



In the pilot, black-box integration used SysML constraint blocks as a link to executable 
simulations. The test case for this connection was to analyze a simple sequence of propulsive 
maneuvers to calculate the propellant needed for a spacecraft to perform its mission. The full 
analysis algorithm was encoded as a Mathematica function. Parametric diagrams were used 
to make the connections between the system model and this analysis, as shown in Figure 4. 
The central block, with the constraint finalCalc: burnMassCalc, is the direct reference to the 
Mathematica function. ParaMagic performed acausal solving of constraint block and Value 
property networks with Mathematica. 

ParaMagic can be contrasted with tools such as iSight and ModelCenter, which also integrate 
simulations. Where they are less able is the connection of these simulations to an information 
model of a system. Thus, the current state of tools available to an integrator requires a choice 
between more intuitive simulation interchange against a strong connection to an integrated 
systems model. As identified above, a true integration between systems and simulation 
models would be preferred, but a great deal of work must happen before then. 

 

 
Figure 4. Parametric diagram for Europa arrival mass 

Information Modeling: Usability and Communicability  
SysML is a young language even though it is based on the 10+ year legacy of the Unified 
Model Language (UML), the basics of requirements, and the theoretical foundations of 
Composable Objects. While SysML brings capabilities for realizing the information 
modeling and diagramming roles in systems engineering, the language still lacks some 
fundamental systems engineering concepts. Most of those observed are based around the fact 
that UML and its meta-model have much in the way of software engineering concepts and 
principles in their architecture. In software modeling the model is a close match to the code, 
but in systems modeling the level of abstraction is arbitrary. The assumption that software 
principles enshrined in the UML meta-model are applicable to systems engineering contains 



some misfits. Model construction, depiction, properties, and behavior in the SysML reflect 
this and thus there is a need for a true systems engineering meta-model and incorporation of 
things useful to systems engineers like tables and timelines. But beyond this, there are a 
series of constructs in the SysML language that appear at first to be compatible with systems, 
but miss the mark in subtle ways. 

One such example observed in this pilot was that of inheritance. Since UML relies on the 
software concept for inheritance – a statement in the code which tells the compiler to copy or 
otherwise provide access to another piece of source code. This concept caused problems with 
inherited ports in the pilot model. The diagrams looked correct, but when generating input-
output tables, Magic Draw could not differentiate ports on the parent block from ports on the 
child block. This was not difficult to find a work around for and it certainly is a tool issue. 
The crux of this issue however, is that SysML needs a meta-model for ports and interfaces 
that takes these systems-specific concerns into consideration. Another example is 
multiplicity. At one level of description, it can be quite handy to specify a simple value for 
the number of components within a system. When it comes time to translate this number into 
a structure, however, there is no way to assign separate roles to each of those components in 
an internal block diagram. For example, the propulsion system that was modeled contained 
many latch valves. To properly model the plumbing of the system, a separate Part property 
for each valve had to be made. 

Instancing is another area that has tension between SysML’s software roots and the mindset 
of systems engineers. In software, instances are all run-time, so their values can be dependent 
upon the user’s input. In systems, the line between archetype and realized instance is 
arbitrary. The authors’ view for systems is that a given instance is the thing to be built (e.g., 
½” threaded bolt #121 within the system testbed) while the archetype is the design.  

This leads to the issue of placing values and other content on IBD/Parametric and Activity 
diagrams. These are probably the single most useful set of diagrams in SysML and most 
natural for systems engineers. Instances on Block Definition Diagrams allow values to be 
captured in the model. They provide only minimal functionality (namely the ability to contain 
instanced values on Value properties), with no graphical utility for communicating or 
simplifying the design. They only serve the purpose of capturing and organizing the 
numerical quantities. Currently these elements are specified separately and then later unified 
through context specific values. This is a tedious effort to performing what amounts to 
assigning numbers to boxes in the eyes of the lay-modeler. 

Parametrics are really behavior models and as such it is very desirable to use them as 
intimately with activity models as they are used with the structural aspects of SysML. For 
example, it makes sense to constrain a downlink activity by the results of an occultation 
analysis or a state transition by orbital altitude. In general, using mathematical terminology 
and constructs is a key aspect of behavioral specification. 

Data structures and representations are another group of limitations for SysML. Systems 
engineers routinely use matrices, vectors, and tensors in their specifications. These concepts’ 
absence often requires the construction of exotic object structures and stereotypes that lead to 
ambiguity in the model. Further, the ability to input data in a compact, structured format such 
as a table would allow for data entry to be performed more rapidly.  

Model Manageability and Durability 
The SysML language does not have a constraint on the size of the system it can describe. 
However, tools for managing scope are required in order to make large system descriptions 



tractable. MagicDraw also lacks larger scale model management tools like the ability to see at 
a macro-level what has changed between model versions or how consistent the model is. 
There are also no tools that allow for deliberate transformation and comparison between 
versions of the SysML standard which would make durability more difficult to assert easily. 

The above are problems for describing a single design point. As stated in other sections of 
this paper, formal models present great potential in increasing the breadth of searches for 
better design solutions. A way to compactly represent a set of combinations, from which 
designs can be generated, would be useful. One such structure is a Morphological Matrix. 
The Morphological Matrix presents a series of alternatives in a structured form, with the 
assumption that the choices in each row are independent (except for incompatibility between 
options). The multi-level version allows for the considerations of structure, as described 
visually in Figure 5 and utilized in software implementations (Engler, Biltgen, 2007). In the 
example shown in the figure, selecting a given aircraft platform speed limits the selection of 
options in other categories, such as type of engine that is feasible.  

 
Figure 5. Representation of combinatorial trade space as an interactive matrix 

(Engler, Biltgen, 2007) 

Derived Principles 
After the pilot was completed, presentations were made to many groups within JPL. 
Reflection upon experiences from the pilot led to the construction of some basic principles to 
observe when using descriptive models for early design. 

1. Model only what you need 

Feedback that was given by project engineers indicates a need for the right level of modeling. 
Modeling excessively can lead to expectations of inaccurate formality and maturity. A good 
modeling heuristic is to only model what you need. An appropriate model can provide a solid 
foundation with the right amount of agility to still accommodate the needs of the project. 

2. Draw diagrams when structures are novel or need to be audited 

The fact that temporary documents such as emails and PowerPoint/Visio drawings are passed 
back and forth refer to the need for both written and pictorial communication. This is a 
moment of opportunity to capture this information for later use and elaboration. 



This may be a place where a lighter weight version of tools typically used to specify a SysML 
model might be useful, or where the ability to easily merge files is most useful. For this 
particular application, the goal is for the user to sketch out the diagram and commit it to a file 
in a format that can be imported later if there is a desire to make the temporary information in 
the diagram permanent. A rigorous metamodel can also be specified in the background of this 
lightweight tool (or Perspective in MagicDraw) from which standardized objects can inherit. 

3. Describe once, represent often 

A strength of SysML drawing tools is that they store data as the user creates diagrams. A 
useful pattern that was discovered during this effort involves the use of the “Related 
Elements” command of MagicDraw. Adding a single element (block, activity, etc.) to a 
diagram and then using this command causes the program to generate all connections that end 
in that element. Judicious trimming at this point would result in a new view of interest. 

Another use of automatic generation is to allow representation of a system at a desired level 
of detail. If there are multiple levels of hierarchy in a system, then automated generation can 
call up one level after another until the new diagram is complete. This simply requires that 
each level of the hierarchy is represented by a Part property that refers to a block with its own 
internal definition. This was applied to the propulsion system as shown in Figure 6. 

At first, the value in this exercise may seem only to be redrawing a few diagrams. However, 
this effort resulted in a model of sufficient complexity for members of the team to forget what 
elements were connected to each other. The use of automated generation in this case served 
as a way to audit the model, since all of the diagrams that had been drawn only involved a 
few elements in order to maintain simplicity. Automatically generating the system model on 
the infinite canvas of the computer screen can also allow systems engineers to audit its 
maturity and completeness. 

Also, as mentioned before, analytical and support tools should be drafted into this principle. 
The design information input into an analysis tool should be recoverable. More than that, the 
synergy of parameter inputs and the underlying information structure of the analysis should 
move toward refinement of the system design. 

 
Figure 6. Automated generation of integrated system diagram 



4. SysML is a language – start new users with elements similar to their own language 

During its introduction at an organization, the work of developing a model will likely emulate 
that of defining requirements. It is very difficult to make a clear English sentence that all 
readers will interpret the same way. It is equally difficult to make a machine-readable 
statement that captures the original intent of the modeler. Modeling will likely involve 
interviews with subject matter experts. If the “playback” representation is chosen carefully, it 
has been found to greatly speed up the process of convergence of understanding between 
modeler and subject expert. But, it is important not to interpret the inclusion of systems 
engineers as a need to “dumb down” the back-end infrastructure of the model. A well-built 
model is still necessary to enable efficient and useful queries and transformations of the 
model downstream. 

Representations of the design should either use familiar symbol semantics or intuitive ones. 
Many questions of “what does the black diamond mean?” came up during discussions in the 
pilot. As described below in the table, various SysML diagrams have different levels of 
connection to the usual concerns of system engineers. For example, the internal block 
diagram is based in the semantics of connections and interfaces between the constituents of a 
system (or subsystem). In order to bring SysML to systems engineers, the most natural 
semantics should be emphasized and introduced first. 

One thing that became clear through this trial effort and others in the systems engineering 
group at JPL is that a select number of SysML diagram types were found to be perplexing or 
foreign. The most oft-cited diagram that garnered this reaction was the block definition 
diagram, which is a systems-flavored descendant of the UML class diagram. At least two of 
the major texts on SysML (Friedenthal, 2008; Holt, Perry, 2007) present this diagram type 
first, showing how the software meta-model and practitioner mindset of UML is in tension 
with SysML’s focus on systems engineers. 

More appropriate diagrams for introducing SysML would be the activity or internal block 
diagrams, which have a graphical syntax (in their most basic forms) that is akin to what is 
already in use. These diagram types are also appropriate for early design. Activity diagrams 
can be used to sketch out concepts of operations, mission designs, and science collection 
schemes. Internal block diagrams are appropriate for representing schematic “cartoons” of 
computer boards and data routing or identifying what parts of hardware will be organized 
under what subsystem. 

Table 1. Attributes of diagrams for early design 

Diagram Type Applicability to Early Phase Familiarity 

Activity Describes high-level operational concept 
and identifies critical events 

Basic version very similar to 
notional diagrams drawn to 
show flow of events 

State Diagrams May be used to highlight states modes and 
phases of the mission 

Varies on experience and 
background. 

Block 
Definition 

Used to describe definitions and instances 
of parts to be used in subsystems. 

Little 

Internal Block Define alternative architectures for 
subsystems (e.g., monopropellant versus 
dual mode propulsion system) 

Similar to notional block 
diagrams, ports easy to 
understand, some semantics 
new to project engineers 



 

5. Leverage diagrams for execution 

Early phases of design are oriented toward analysis and identification of suitable levels of 
performance for the spacecraft and its various subsystems. The design is a moving target, and 
so at this phase, there is not much reason to describe it in detail. However, when the frenetic 
burst of early design activity is over, a description of both the design and its rationale will 
need to be produced. There is the rub. 

Automatically retaining descriptions of design alternatives allows for the construction of a 
richer record of support for design decisions. This is a valuable result of a model-based 
approach, but it may be insufficient to repay the efforts invested in training users and 
developing models. The value of these artifacts may be increased if they are developed not as 
simple descriptions, but part of the core data structure behind analyses. 

A very simple version of this was done with a launch date sensitivity analysis that was 
conducted during the effort. In it, a series of candidate launch vehicles were modeled, as were 
alternate trajectories. These were used to make a full combinatorial matrix to see how much 
launch mass could arrive at destination for a given launch window with a given launch 
vehicle. A script automatically reported this matrix, and although the combinations were built 
by hand, a script could also construct the combinatorial space of options. Each alternative 
was created with instances of Blocks that described the launch vehicles and the trajectories, 
and a Mathematica notebook was used with the ParaMagic plug-in to calculate the delivered 
mass of each of the alternatives. 

6. Understand simulation tool meta-models 

Simulation models are core to engineering design. If these models are well-structured, they 
can provide the properties needed for integration with the information model as well as with 
other simulations and tools. This will ease integration efforts but may require additional work 
for successful execution. For example, the simulation of the instruments in the pilot would 
have to be broken up into separate simulations for each instrument since these interfaces are 
internal to the simulation and cannot be explicitly accessed through Matlab or ParaMagic. 

7. Don’t pollute your system model 

The information model provided by SysML is not a general purpose database. It is not 
intended to store thousands of alternatives, trade space explosions and records of various 
activities. It is meant to provide architecture and specifications. Two to three key detailed 
alternatives are appropriate, but it will not support huge numerical crunching activities that 
are better suited to other tools. A systems model is best suited to capturing the essence of the 
result of those activities and to generating data for them. In the larger picture, SysML tools 
should aim to integrate with other tools that support these kinds of problems more robustly. 

8. Keep systems engineers involved and work on real problems. 

Engineers used to working with a particular paradigm present apprehension about losing 
capabilities and interfaces they are familiar with and/or that are required to achieve the 
objective of their engineering task. This is a valid concern, and developers of the model-
based paradigm need to work closely with users to speed adoption. Also, as this pilot has 
made clear, useful work toward model-centric environments is becoming less conceptual and 
more focused on implementation. This is also a sentiment encountered while trying to 
advance MBSE at JPL – the precepts of MBSE are lauded as important, but skepticism 
focuses on the maturity of implementation approaches. Keeping systems engineers involved 
keeps the problems of implementation in focus. 



A good example of this is in the limited data representations that are allowable in SysML. 
Systems engineers like designing with diagrams, however they equally prefer a tabular 
interface. Until the SysML adds tables or CASE tools start supporting editable tables, this 
interface must be added separately to ensure engineers have what they need to do their work. 

Summary 
Overall the pilot was successful in demonstrating the capabilities and some advantages and 
challenges of MBSE and integrated modeling over the document based paradigm. The IMCE 
pilot worked with currently existing model specification tools and simulations to understand 
what happens when rubber meets road. Issues were found with the SysML language, the 
current disposition of simulation tools, and the way that information modeling is presented to 
systems engineers. However, the pilot also found that tools for specifying systems, such as 
SysML, are mostly ready to do their jobs. Further, efforts on SysML/simulation tools such as 
ParaMagic and the scripting capabilities of both the simulation tools and MagicDraw are also 
both well on their way to success.  
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